

OBDH 2.0 Documentation

OBDH 2.0 Documentation SpaceLab, Universidade Federal de Santa Catarina, Florianópolis - Brazil

November 2022

OBDH 2.0 Documentation

November, 2022

Project Chief: Eduardo Augusto Bezerra

Authors:

Gabriel Mariano Marcelino André Martins Pio de Mattos Yan Castro Azeredo Bruno Benedetti Rebecca Quintino do Ó

Contributing Authors:

Revision Control:

Version	Author(s)	Changes	Date
0.1	Gabriel M. Marcelino	Document creation	10/2019
0.5	Gabriel M. Marcelino	First stable hardware	08/2020
0.6	A. M. P. Mattos, G. M.	First hardware integration	04/2021
	Marcelino, Y. A. Azeredo	-	
0.7	A. M. P. Mattos, G. M.	General firmware and	06/2021
	Marcelino, Y. A. Azeredo	hardware improvements	
0.8	Gabriel M. Marcelino	Adding the FRAM memory	10/2021
0.9	Gabriel M. Marcelino	General improvements	03/2022
0.10	Gabriel M. Marcelino,	General improvements	11/2022
	Bruno Benedetti, Rebecca		
	Q. do Ó		

© 2022 by Universidade Federal de Santa Catarina. OBDH 2.0 Documentation. This work is licensed under the Creative Commons Attribution–ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

1.1	3D view of the OBDH 2.0 PCB	1
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Product tree of the OBDH 2.0 module.4OBDH 2.0 Block diagram.5System layers.5OBDH 2.0 operation flowchart7OBDH's 2.0 boot sequence.7OBDH's 2.0 boot sequence.6Antenna deploy routine7Telecommand's processing flowchart10Transmit/Receive flowchart11Data path diagram.12Available status LEDs.12	1557390122
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19	Top side of the PCB.13Bottom side of the PCB.14Side view of the PCB.14Interfaces diagram.15Bottom view of PC-104 and simplified labels16Antenna module conectors.17Programmer (P1 and P2) and jumper (P6) connectors.18Dedicated UART debug connectors (P7).18Samtec FSI-110-03-G-D-AD connector.19Daughterboard connector (P3).19Recommended shape and size of the daughterboard.20Illustrative daughterboard integration.21Microcontroller internal diagram.21Microcontroller pinout positions.22External memory circuit.25FRAM memory circuit.26I2C buffer circuit.26RS-485 transceiver circuit.27	3 1 1 5 5 7 3 3 9 9 0 1 2 5 5 5 7 7 7 7 8 9 9 0 0 1 2 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
4.1	Product tree of the firmware of the OBDH 2.0 module)
5.1 5.2 5.3	Additional GPIOs and I2C channel 1.44Additional I2C channel 0.44Additional GPIO and SPI channel.44	1 1 1
6.1	Firmware initialization on PuTTy	õ

A.1	Top view of the OBDH 2.0 v0.5 board.	50
A.2	Bottom view of the OBDH 2.0 v0.5 board.	51
A.3	Log messages during the first boot.	52
A.4	I^2C port 0 test.	52
A.5	I^2C port 1 test	53
A.6	I^2C port 2 test.	53
A.7		54
A.8	Current sensor fix.	54
A.9	Log messages with the read values from the current sensor	55
A.10	NOR memory SPI test.	56
B.1	Top view of the OBDH 2.0 v0.7 board.	58
B.2	Bottom view of the OBDH 2.0 v0.7 board.	58
B.3	Log messages during the first boot.	59
B.4	Setup of the I2C port tests.	60
B.5	Waveform of the I2C port 0	61
B.6	Waveform of the I2C port 1	61
B.7	Waveform of the I2C port 2	62
B.8	Test results of the NOR flash memory.	63
B.9	Test results of the FRAM memory	64

List of Tables

3.1	Boards interfaces.	15
3.2	PC-104 connector pinout.	16
3.3	Antenna module connectors pinout.	17
3.4	Programmer header connector pinout	18
3.5	Programmer picoblade connector pinout.	18
3.6	Daughterboard connector pinout	20
3.7	Microcontroller features summary	21
3.8	USCI configuration.	21
3.9	Microcontroller pinout and assignments	24
4.1	External libraries and dependencies of the firmware	29
4.2	Firmware tasks	31
4.3	Variables and parameters of the OBDH 2.0	33
4.4	Beacon packet.	34
4.5	EDC information packet	35
4.6	EDC samples packet	36
4.7	System telecomamnds	36
4.8	Enter hibernation telecommand	36
4.9	Leave hibernation telecommand	37
4.10	Leave hibernation telecommand	37
4.11	Ping telecommand	39
4.12	Ping telecommand answer.	39
4.13	Message broadcast telecommand.	40
4.14	FreeRTOS main configuration parameters	41
5.1	Additional PC104 inferfaces.	44

Nomenclature

EDC	Environmental Data Collector.
PCB	Printed Circuit Board.
PCB	Printed Circuit Board.
ADC	Analog-to-Digital Converter.
FRAM	Ferroelectric Random-Access Memory.
GPIO	General Purpose Input/Output.
HAL	Hardware Abstraction Layer.
I2C	Inter-Integrated Circuit.
IC	Integrated Circuit.
IDE	Integrated Development Environment.
JTAG	Joint Test Action Group.
LED	Light-Emitting Diode.
OBC	On-Board Computer.
OBDH	On-Board Data Handling.
RTOS	Real-Time Operating System.
SPI	Serial Peripheral Interface.
UART	Universal Asynchronous Receiver/Transmitter.
USCI	Universal Serial Communication Interfaces.

Contents

List	t of F	igures	vi
List	t of T	ables	vii
No	menc	ature	ix
1	Intro	luction	1
2	Syste 2.1 2.2 2.3 2.4	Product tree	3 3 4 5 6 6 6
3	Hard 3.1 3.2 3.3	ware1Interfaces1External Connectors13.2.1PC-10413.2.2Antenna Module13.2.3Programmer and Debug13.2.4Daughterboard1Microcontroller13.3.1Interfaces Configuration23.2.2Dineut2	13 14 15 17 17 18 21 21
	 3.4 3.5 3.6 3.7 3.8 	3.3.3 Pinout 2 External Watchdog 2 Non-Volatile Memories 2 3.5.1 Flash NOR 2 3.5.2 FRAM 2 I2C Buffers 2 RS-485 Transceiver 2 Voltage and Current Sensors 2	22 24 25 25 25 26 26 27
4	Firm 4.1 4.2	vare Product tree	29 29 29

4.3	Tasks		29
	4.3.1	Antenna deployment	29
	4.3.2	Antenna reading	29
	4.3.3	Beacon	29
	4.3.4	Data log	31
	4.3.5	EDC reading	31
	4.3.6	EPS reading	31
	4.3.7	Heartbeat	31
	4.3.8	Housekeeping	31
	4.3.9	Read sensors	31
	4.3.10	Startup (boot)	32
	4.3.11	System reset	32
	4.3.12	Telecommand processing	32
	4.3.13	Time control	32
	4.3.14	TTC reading	32
	4.3.15	Watchdog reset	32
4.4	Variab	les and Parameters	32
4.5	Teleme	etru	34
	4.5.1	Beacon	34
	4.5.2	EDC Information	34
	4.5.3	EDC Samples	34
4.6	Teleco	mmands	34
	4.6.1	Enter hibernation	35
	4.6.2	Leave hibernation	35
	4.6.3	Activate beacon	37
	4.6.4	Deactivate beacon	37
	4.6.5	Activate FDC	37
	4.6.6	Deactivate EDC	37
	4.6.7	Get FDC info	37
	4.6.8	Activate Module	37
	4.6.9	Deactivate Module	38
	4.6.10	Activate Radiation Instrument	38
	4611	Deactivate Radiation Instrument	38
	4612	Activate Pauload	38
	4613	Deactivate Pauload	38
	4614	Frase Memoru	38
	4615	Force Reset	38
	4616	Get Pauload Data	38
	4617	Set Parameter	30
	4 6 18	Get Parameter	39
	4619	Set sustem time	39
	4 6 20	Pina	39
	4 6 21	Message broadcast	40
	4622	Request data	40
47	Onerat	ting Sustem	40
4.8	Hardw	vare Abstraction Lauer (HAL)	40
1.0	riuuw		10

5	Boa 5.1 5.2 5.3	rd Assembly Development Model	43 43 43 43 43 43
6	Usag 6.1 6.2 6.3	ge Instructions Powering the Board	45 45 45 45
Re	feren	ces	47
Ар	pend	ices	49
A	Test A.1 A.2 A.3 A.4 A.5 A.6	Report of v0.5 Version Visual Inspection Firmware Programming Communication Busses Sensors A.4.1 Input Voltage A.4.2 Input Current A.5.1 NOR Flash Memory Conclusion	49 49 50 51 51 52 53 53 53
В	Test B.1 B.2 B.3 B.4 B.5 B.5	Report of v0.7 VersionVisual InspectionFirmware ProgrammingCommunication BussesSensorsB.4.1 Input VoltageB.4.2 Input CurrentPeripheralsB.5.1 NOR Flash MemoryB.5.2 FRAM MemoryConclusion	57 57 59 60 61 62 62 63 63

CHAPTER 1

Introduction

The OBDH 2.0 is an On-Board Computer (OBC) module designed for nanosatellites. It is one of the service modules developed for the GOLDS-UFSC CubeSat Mission [1]. The module is responsible for synchronizing actions and the data flow between other modules (i.e., power module, communication module, payloads) and the Earth segment. It packs the generated data into data frames and transmits it back to Earth through a communication module or stores it on non-volatile memory for later retrieval. Commands sent from the Earth segment to the CubeSat are received by radio transceivers located in the communication module and redirected to the OBDH 2.0, which takes the appropriate action or forward the commands to the target module.

The module is a direct upgrade from the OBDH of FloripaSat-1 [2], which grants a flight heritage rating. The improvements focus on providing a cleaner and more generic implementation compared to the previous version, along with more reliability in software and hardware implementations and adaptations for the new mission requirements. The whole project, including source and documentation files, is available freely on a GitHub repository [3] under the GPLv3 license.

Figure 1.1: 3D view of the OBDH 2.0 PCB.

CHAPTER 2

System Overview

The board has an MSP430 low-power microcontroller that runs the firmware application and several other peripherals for extended operation and physical interfaces (i.e., non-volatile memory, watchdog timer, service modules, payloads interfaces, daughterboard interface, and current monitor). The microcontroller manages the other sub-modules within the board using serial communication buses, synchronizes actions, handles communication with the ground segment, and manages the data flow. The programming language used is C, and the firmware was developed using the Code Composer Studio IDE (a.k.a. CCS) for compiling, programming and testing. The module has many tasks over distinct protocols and time requirements, such as interfacing peripherals and other MCUs. To improve predictability, a Real-Time Operating System (RTOS) is used to ensure that the deadlines are observed, even under a faulty situation in a routine. The RTOS chosen is the FreeRTOS (v10.0.0), since it is designed for embedded systems applications and was already validated in space applications. The firmware architecture follows an abstraction layer scheme to facilitate higher-level implementations and allow more portability across different hardware platforms.

2.1 Product tree

The product tree of the OBDH 2.0 module is available in Figure 2.1.

2.2 Block Diagram

Figure 2.2 presents a simplified view of the module subsystems and interfaces. The microcontroller has a programming JTAG and 6 communication buses, divided into 3 different protocols (I2C, SPI, and UART), that is shared between all the peripherals and external interfaces. Besides these channels, there are GPIO connections for various functions, from control ports to status pins. There is a non-volatile memory device to store the satellite data frames and critical status indicators. Some buffers and transceivers allow secure and proper communication with external modules. A watchdog timer with a voltage monitor and a current sensor is attached to the system to improve the overall reliability and generate essential housekeeping data. There is a generic daughterboard interface for extending the module capabilities with an auxiliary application board. Also, a UART debug interface is directly connected to the microcontroller. More details and descriptions about these components and interfaces are provided in chapter 3.

Figure 2.1: Product tree of the OBDH 2.0 module.

2.3 System Layers

As mentioned, the system is divided into abstraction layers to favor high-level firmware implementations. The Figure 2.3 shows this scheme, composed of third-party drivers at the lowest layer above the hardware, the operating system as the base building block of the module, the devices handling implementation, and the application tasks in the highest layer. More details are provided in chapter 4.

Figure 2.2: OBDH 2.0 Block diagram.

Figure 2.3: System layers.

2.4 **Operation**

The system operates through the sequential execution of routines (tasks in the context of the operating system) that are scheduled and multiplexed over time. Each routine has a priority and a periodicity, determining the subsequent execution, the set of functionalities currently running, and the memory usage management. Besides this deterministic scheduling system, the routines have communication channels with each other through the usage of queues, which provides a robust synchronization scheme. In chapter 4 the system operation and the internal nuances are described in detail. Then, this section uses a top-view user perspective to describe the module operation.

2.4.1 Execution Flow

The OBDH 2.0 execution flowchart can be seen on Figure 2.4.

- The boot sequence can be seen better on Figure 2.5.
- The antenna deploy routine is exemplified with the flowchart on Figure 2.6.
- The Telecommand's processing flowchart can be seen on Figure 2.7.
- The Transmit/Receive sequence can be seen with the flowchart on Figure 2.8.

2.4.2 Data Flow

The OBDH 2.0 controls most of the CubeSat's data flow, which can be seen on Figure 2.9.

2.4.3 Status LEDs

On the development version of the board, eight LEDs indicate some behaviors of the systems. This set of LEDs can be seen on Figure 2.10.

A description of each of these LEDs are available below:

- D1 System LED: Heartbeat of the system. Blinks at a frequency of 1 Hz when the system is running properly.
- D2 Fault LED: Indicates a critical fault in the system.
- D3 UART0 TX: Blinks when data is being transmitted over the UART0 port.
- D4 UARTO RX: Blinks when data is being received over the UARTO port.
- D5 UART1 TX: Blinks when data is being transmitted over that UART1 port.
- D6 UART1 RX: Blinks when data is being received over the UART1 port.
- D7 Antenna VCC: Indicates that the antenna module board is being power sourced.
- D8 OBDH VCC: Indicates that the OBDH board is being power sourced.

These LEDs are not mounted in the flight version of the module.

Figure 2.4: OBDH 2.0 operation flowchart

Figure 2.5: OBDH's 2.0 boot sequence.

Figure 2.6: Antenna deploy routine

Figure 2.7: Telecommand's processing flowchart

Figure 2.8: Transmit/Receive flowchart

Figure 2.9: Data path diagram.

D7	D8	D5	D6	D3	D4	D2	D1
805	0805	5080	5080	5080	1080	0805	5080
R12	R13	R6	83	2	R5	ß	ß
ANT_UCC	OBDH_DUCC	UART1_TX	UART1_RX	UARTO_TX	UARTO_RX	FAULT_LED	system_led

Figure 2.10: Available status LEDs.

CHAPTER 3

Hardware

The OBDH 2.0 architecture focuses on the low-power operation and low-cost production, maintaining performance and proposing different approaches to increase overall reliability. Therefore, the board was developed using these criteria, and the changes from the original design were necessary to improve bottlenecks and achieve the requirements of the further space mission. The Figure 2.2 presents the module architecture from the hardware perspective, including the main PCB components and interfaces: microcontroller, buffers, transceivers, memory, watchdog and voltage monitor, and connectors. The following sections describe the hardware design, interfaces, and standards in detail. The Figures 3.1, 3.2, and 3.3 present 3D-rendered images of the top, bottom, and side views of the board, respectively.

Figure 3.1: Top side of the PCB.

Figure 3.2: Bottom side of the PCB.

Figure 3.3: Side view of the PCB.

3.1 Interfaces

The Figure 3.4 presents the board interfaces, which consist of communication with other modules, debug access points, and internal peripherals. From the perspective of the micro-controller, there are 6 individual and shared communication buses and the JTAG interface in the following scheme: A0-SPI (shared with Radio, TTC, and external memory chip); A1-UART (shared with redundant payloads); A2-UART (dedicated for debugging); B0-I2C (dedicated for the payload); B1-I2C (dedicated for the EPS); B2-I2C (dedicated for the Antenna module). Currently, "Payload 1" and "Payload 2" are "Radiation instrument" and "Payload EDC" respectively.

3.2 External Connectors

The external interfaces are connected to the microcontroller using different connector types: EPS, TTC, Radio, and Payloads through PC-104; Antenna module with 6H header and 6P picoblade connectors; JTAG through 14H header and 6P picoblade connectors; and debug access using a dedicated 2H header and shared with the JTAG connectors. The following

Figure 3.4: Interfaces diagram.

Peripheral	USCI	Protocol	Comm. Protocol
TTC	A0	SPI	Register read/write
Radio (downlink/link)	A0	SPI	Radio config./NGHam
NOR Memory	A0	SPI	-
FRAM Memory	A0	SPI	-
Payload port	A1	UART	_1
PC (log messages)	A2	UART	ANSI messages
Payload port	B0	I ² C	_1
EPS	B1	I ² C	Register read/write
Antenna Module	B2	I ² C	-

Table 3.1: Boards interfaces.

topics describe these interfaces and present the pinout of the connectors.

3.2.1 PC-104

The connector PC-104 is a junction of two double-row 28H headers (SSW-126-04-G-D). These connectors create a solid 104-pin interconnection across the different satellite

¹The communication protocol of the payload ports depends of the used payload.

modules. The Figure 3.5 shows the PC-104 interface from the bottom side of the PCB, which allows visualizing the simplified label scheme in the board. Also, the Table 3.2 provides the connector pinout² for the pins that are connected to the module.

Figure 3.5: Bottom view of PC-104 and simplified labels

Pin [A-B]	H1A	H1B	H2A	H2B
1-2	_	_	_	-
3-4	-	-	GPIO_4	GPIO_5
5-6	-	-	-	-
7-8	GPIO_0	GPIO_1	-	GPIO_6
9-10	GPIO_2	-	-	-
11-12	GPIO_3	GPIO_7	SPI_0_MOSI	SPI_0_CLK
13-14	-	-	SPI_0_CS_1	SPI_0_MISO
15-16	-	-	-	-
17-18	UART_1_RX	GPIO_8	-	-
19-20	UART_1_TX	GPIO_9	-	-
21-22	-	-	-	-
23-24	-	-	-	-
25-26	-	-	-	-
27-28	-	-	-	-
29-30	GND	GND	GND	GND
31-32	GND	GND	GND	GND
33-34	-	-	-	-
35-36	SPI_0_CLK	-	VCC_3V3_ANT	VCC_3V3_ANT
37-38	SPI_0_MISO	-	-	-
39-40	SPI_0_MOSI	SPI_0_CS_0	-	-
41-42	I2C_0_SDA	-	-	-
43-44	I2C_0_SCL	-	-	-
45-46	VCC_3V3	VCC_3V3	VCC_BAT	VCC_BAT
47-48	-	-	-	-
49-50	-	-	I2C_1_SDA	-
51-52	-	-	I2C_1_SCL	-

Table 3.2: PC-104 connector pinout.

²This pinout is simplified since additional interfaces were omitted. Refer to *option sheet* in chapter 5.

3.2.2 Antenna Module

The communication with the Antenna module is performed through external connectors, which are presented in the Figure 3.6. Both connectors have the same connections, but the 3.6(a) (6H header) is used for development, and the 3.6(b) (6P picoblade) as the connector for the flight model. This interface consists of a dedicated I2C, power supply, and GPIO, described in the Table 3.3.

Pin	Row
1	VCC_3V3_ANT
2	VCC_3V3_ANT
3	I2C_SDA
4	I2C_SCL
5	GPIO
6	GND

Table 3.3: Antenna module connectors pinout.

Figure 3.6: Antenna module conectors.

3.2.3 Programmer and Debug

The interface with the microcontroller programmer is performed through external connectors, which are presented in the Figure 3.7. Both connectors have the same JTAG and UART interfaces. However, the 14H header is used during development, and the 6P picoblade (provides a more compact and reliable attachment) as the connector for the flight model, which is described in the Table 3.4 and Table 3.5, respectively. This interface consists of a dedicated debug UART, a JTAG, and an external power supply. The debug UART connection has another access point in a dedicated 2H header (P7), as shown in Figure 3.8. Also, to use this external supply, it is necessary to connect both pins of a 2H header jumper (P6).

Figure 3.7: Programmer (P1 and P2) and jumper (P6) connectors.

Pin [A-B]	Row A	Row B
1-2	TDO_TDI	VCC_3V3
3-4	-	-
5-6	-	-
7-8	TCK	-
9-10	GND	-
11-12	_	UART_TX
13-14	-	UART_RX

Table 3.4: Programmer header connector pinout.

Pin	Row
1	VCC_3V3
2	TDO_TDI
3	TCK
4	UART_TX
5	UART_RX
6	GND

Table 3.5: Programmer picoblade connector pinout.

Figure 3.8: Dedicated UART debug connectors (P7).

3.2.4 Daughterboard

The daughterboard interface uses the Samtec FSI-110-D connector [4], which can be seen in the Figure 3.9. This connector has metal contacts in the format of flexible arcs and four polymer guide pins (a pair for the top and bottom). When the daughterboard is attached, there is some pressure on the metal contacts that bend and create a meaningful

pin connection to the daughterboard copper pads³. A picture of this connector on the PCB can be seen in Figure 3.10.

Figure 3.9: Samtec FSI-110-03-G-D-AD connector.

Figure 3.10: Daughterboard connector (P3).

The pinout of the daughterboard interface is available in the Table 3.6. There are different power supply lines (OBDH, Antenna, and battery), communication buses (I2C and SPI), GPIO, and ADC interfaces available. Besides the GPIO and ADC pins, the other interfaces are shared with other modules and peripherals.

Guidelines

The recommended shape and size of the daughterboard can be seen in the Figure 3.11. Besides that, there are mandatory and suggested elements placement: four M3 holes for mechanical attachment, required; contact connector pads (in light gray on the bottom layer), required; two debug headers on the left and bottom sides, suggested; and a general purpose flight model picoblade suggested.

3.3 Microcontroller

The OBDH 2.0 uses a low-power and low-cost microcontroller family from Texas Instruments; the MSP430F6659 [5]. This device provides sufficient performance for low and medium-complexity software and algorithms, allowing the module to execute the required

³These daughterboard pads are similar to the ones used as a footprint in the OBDH, despite a slightly bigger size.

Pin [A-B]	Row A	Row B	
1-2	VCC_3V3	GND	
3-4	VCC_3V3_ANT	GND	
5-6	VCC_BAT	GND	
7-8	GPIO_0	GPIO_1	
9-10	GPIO_2	GPIO_3	
11-12	SPI_0_CLK	ADC_0	
13-14	SPI_0_MISO	ADC_1	
15-16	SPI_0_MOSI	ADC_2	
17-18	SPI_0_CS_0	I2C_2_SDA	
19-20	SPI_0_CS_1	I2C_2_SCL	

Table 3.6: Daughterboard connector pinout.

Figure 3.11: Recommended shape and size of the daughterboard.

Figure 3.12: Illustrative daughterboard integration.

tasks. The Table 3.7 presents a summary of the main available features and Figure 3.13 shows the internal subsystems, descriptions, and peripherals. The microcontroller interfaces, configurations, and auxiliary components are described in the following topics.

Flash	SRAM	Timers	USCI	ADC	DAC	GPIO
512KB	64KB	2	6 (SPI / I2C / UART)	12	2	74

 Table 3.7: Microcontroller features summary.

Figure 3.13: Microcontroller internal diagram.

3.3.1 Interfaces Configuration

The microcontroller has 6 Universal Serial Communication Interfaces (USCI) that can be configured to operate with different protocols and parameters. These interfaces are connected to different modules and peripherals, as presented in the Figure 3.4. The Table 3.8 describes each interface configuration.

Interface	Protocol (Index)	Mode	Word Length	Data Rate	Configuration
USCI_A0	SPI	Master	8 bits	1 Mbps	Phase: High
					Polarity: Low
USCI_A1	UART1	-	8 bits	115200 bps	Stop bits: 1
					Parity: None
USCI_A2	UART0	-	8 bits	115200 bps	Stop bits: 1
					Parity: None
USCI_B0	I2C0	Master	8 bits	100 kbps	Adr. len: 7 bits
USCI_B1	I2C1	Master	8 bits	100 kbps	Adr. len: 7 bits
USCI_B2	I2C2	Master	8 bits	100 kbps	Adr. len: 7 bits

Table 3.8: USCI configuration.

3.3.2 Clocks Configuration

Besides the internal clock sources, the microcontroller has two dedicated clock inputs for external crystals: the main clock and the auxiliary. A 32 MHz crystal and a 32.769 kHz

are connected to these inputs. The first source is used for generating the Master Clock (MCLK) and the Subsystem Master Clock (SMCLK), which are used by the CPU and the internal peripheral modules. The second source is used for generating the Auxiliary Clock (ACLK) that handles the low-power modes and might be used for peripherals.

3.3.3 Pinout

An illustration of the microcontroller pinout positions can be seen in the Figure 3.14. The Table 3.9 presents the OBDH 2.0 microcontroller pins assignment.

Figure 3.14: Microcontroller pinout positions.

Pin Code	Pin Number	Signal
P1.0	34	MAIN_RADIO_ENABLE
P1.1	35	MAIN_RADIO_GPIO0
P1.2	36	MAIN_RADIO_GPI01
P1.3	37	MAIN_RADIO_GPIO2
P1.4	38	MAIN_RADIO_RESET
P1.5	39	MAIN_RADIO_SPI_CS
P1.6	40	TTC_MCU_SPI_CS
P1.7	41	-
---------------	----------	------------------------
P2.0	17	SPI CLK
P2.1	18	I2C0 SDA
P2.2	19	12C0_SCI
P2.3	20	-
P24	20	SPL MOSI
P25	21	SPL MISO
P26	22	VERSION BITO
P2.7	23	VERSION BIT1
 	10	
P 3.0 D2 1	42	12C0_LIN 12C1_EN
	43	
P3.2	44	
P3.3	45	
P3.4	46	
P3.5	47	I2C2_READY
P3.6	48	PC104_GPI00
P3.7	49	PC104_GPI01
P4.0	50	PC104_GPIO2
P4.1	51	PC104_GPI03
P4.2	52	MEM_HOLD
P4.3	53	MEM RESET
P4.4	54	MEM SPI CS
P4.5	55	PC104 GPIO4
P4.6	56	PC104 GPI05
P4.7	57	PC104 GPI06
	0	
P J.0 D5 1	9	
	10	AGIND SVSTEM FALLET
P 3.2	20 21	STSTEM_FAULT_LED
P3.3 DE 4	31 22	
P0.4	32	PAYLOAD_U_ENABLE
P5.5	33	PAYLOAD_I_ENABLE
P5.6	16	-
P5.7	88	-
P6.0	97	D_BOARD_ADC0
P6.1	98	D_BOARD_ADC1
P6.2	99	D_BOARD_ADC2
P6.3	100	OBDH_CURRENT_ADC
P6.4	1	OBDH_VOLTAGE_ADC
P6.5	2	D_BOARD_SPI_CS0
P6.6	3	D_BOARD_SPI_CS1
P6.7	4	_
P7.0	_	_
P7.1	_	_
P7.2	84	XT2 N
P7.3	85	XT2 P
P7.4	5	D BOARD GPIO0
	5	

P7.5	6	D_BOARD_GPI01
P7.6	/	D_BOARD_GPI02
Ρ/./	8	D_BOARD_GPI03
P8.0	58	-
P8.1	59	-
P8.2	60	UART1_TX
P8.3	61	UART1_RX
P8.4	62	-
P8.5	65	I2C1_SDA
P8.6	66	I2C1_SCL
P8.7	67	ANTENNA_GPIO
P9.0	68	FRAM_WP
P9.1	69	FRAM_SPI_CS
P9.2	70	UART0_TX
P9.3	71	UART0_RX
P9.4	72	WDI_EXT
P9.5	73	I2C2_SDA
P9.6	74	I2C2_SCL
P9.7	75	MR_WDOG
PJ.0	92	TP21
PJ.1	93	TP22
PJ.2	94	TP23
PJ.3	95	TP24
_	13	XT1IN
-	14	XT10UT
-	96	JTAG_TDO_TDI
_	91	JTAG_TCK

Table 3.9: Microcontroller pinout and assignments.

3.4 External Watchdog

In addition to the internal watchdog timer of the microcontroller, to ensure a system reset in case of a software freeze, an external watchdog circuit is being used. For that, the TPS3823 IC from Texas Instruments [6] was chosen. This IC is a voltage monitor with a watchdog timer feature. This circuit can be seen in the Figure 3.15.

This circuit works this way: if the WDI pin remains high or low longer than the timeout period, then reset is triggered. The timer clears when reset is asserted or when WDI sees a rising or falling edge.

The watchdog timer task clears the TPS3823 timer by toggling the WDI pin every 100 *ms*. If the WDI pin state stays unmodified for more than 1600 *ms*, the reset pin is cleared, and the microcontroller is reset.

Figure 3.15: External watchdog timer circuit.

3.5 Non-Volatile Memories

There are two non-volatile memories available on the module: one flash NOR memory and one FRAM memory.

3.5.1 Flash NOR

The flash NOR non-volatile memory model is the Micron MT25QL01GBBB, which is composed of a NOR flash architecture with 1 Gb of capacity (or 128 MB) and features extended SPI configurations. As seen in Figure 3.4, an SPI bus is used to communicate with this peripheral, using the Table 3.8 configurations. Also, some control pins are connected to microcontroller GPIOs: HOLD#, RESET#, and W#.

When RESET# is driven LOW, the device is reset, and the outputs are tri-stated. The HOLD# signal pauses serial communications without deselecting or resetting the device; outputs are tri-stated, and inputs are ignored. The W# signal handles as write protection, freezes the status register, turning its non-volatile bits read-only and preventing the write operation from being executed.

Figure 3.16: External memory circuit.

3.5.2 FRAM

The EXCELONTM Auto CY15X102QN is an automotive grade, 2Mb non-volatile memory employing an advanced ferroelectric process. A ferroelectric random access memory or F-RAM is non-volatile and performs reads and writes similar to RAM. It provides reliable data retention for 121 years. The schematics of the memory can be seen in Figure 3.17, an SPI bus is used to communicate with this peripheral.

Figure 3.17: FRAM memory circuit.

3.6 I2C Buffers

The microcontroller I2C interfaces have dedicated IC buffers, which improve the signal quality throughout the various connectors and offer reliability enhancements since it protects the bus in case of failures. This measure was adopted in all the satellite modules due to previous failures in I2C buses. Using this scheme, the modules connected through this protocol might have shared connections without losing performance or reliability.

The buffer selected for this function is the Texas Instruments TCA4311 device. Besides the I2C inputs and outputs, it features control and status signals that are connected to GPIOs in the microcontroller: an enable and an operation-ready status. Also, both inputs and outputs in these I2C lines have external pull-up resistors.

Figure 3.18: I2C buffer circuit.

3.7 RS-485 Transceiver

The module features an RS-485 interface connected to a 4H header (P8). This interface uses a transceiver (THVD1451) to convert the incoming RS-485 signals to UART and vice-versa. The outputs are 120 Ω differential pairs that have termination resistors before connecting to the header pins.

Figure 3.19: RS-485 transceiver circuit.

3.8 Voltage and Current Sensors

To monitor the board's overall current and voltage, the module has a current sensor using a Maxim Integrated IC (MAX9934) and a buffered voltage divider circuit with a Texas Instruments IC (TLV341A). These circuits have direct analog outputs that are connected to ADC inputs. The microcontroller's internal ADC peripheral has a dedicated input for a voltage reference, which is connected to the REF5030A IC. This device generates a precise 3 V output that enhances the measures and conversions performed by the microcontroller.

CHAPTER 4

Firmware

4.1 **Product tree**

The product tree of the firmware part of the OBDH 2.0 module is available in Figure 4.1.

4.2 **Dependencies**

The firmware depends on external libraries to access the embedded hardware or to communicate with other modules. A list of these libraries and the used version is available in Table 4.1.

Library	Version
MSP430 DriverLib	v2.91.11.01
FreeRTOS	v10.2.1

Table 4.1: External libraries and dependencies of the firmware.

4.3 Tasks

A list of the firmware tasks can be seen in the Table 4.2. All these tasks are better described below.

4.3.1 Antenna deployment

This task deploys the Antenna module at the start of the mission.

4.3.2 Antenna reading

Reads the Antenna module status.

4.3.3 Beacon

The Beacon task transmits a data package containing the satellite's basic telemetry data every 60 seconds.

Figure 4.1: Product tree of the firmware of the OBDH 2.0 module.

Name	Priority	Initial delay [ms]	Period [ms]	Stack [bytes]
Antenna deployment	Highest	0	Aperiodic	150
Antenna reading	Medium	2000	60000	150
Beacon	High	10000	60000	1000
Data log	Medium	2000	600000	225
EDC reading	Medium	2000	60000	300
EPS reading	Medium	2000	60000	384
Heartbeat	Lowest	2000	500	160
Housekeeping	Medium	2000	10000	160
Read sensors	Medium	2000	60000	140
Startup (boot)	Highest	0	Aperiodic	350
System reset	Medium	0	36000000	128
Telecommand processing	High	10000	5000	500
Time control	Medium	1000	1000	128
TTC reading	Medium	2000	60000	384
Watchdog reset	Lowest	0	100	150

Table 4.2: Firmware tasks.

4.3.4 Data log

This task saves the housekeeping data of the satellite in flash memory every 10 minutes.

4.3.5 EDC reading

This task reads all the EDC packages and data.

4.3.6 EPS reading

This task reads all the EPS data and status.

4.3.7 Heartbeat

The heartbeat task keeps blinking a LED ("*System LED*" in Figure 2.10) at a rate of 1 Hz during the execution of the system. Its purpose is to give visual feedback on the execution of the scheduler. This task does not have a specific purpose on the flight version of the module (the flight version of the PCB does not have LEDs).

4.3.8 Housekeeping

This task reads all the important OBDH data and status.

4.3.9 Read sensors

This task reads the internal sensors of the OBDH every 60 seconds.

4.3.10 Startup (boot)

This task is the first executed task when the system starts. All devices, libraries, and data structures are initialized in this task. When the execution is done, the remaining tasks of the system are allowed to execute.

4.3.11 System reset

This task resets the microcontroller by software every 10 hours. This can be useful to clean up possible wrong values in variables, repeat the antenna deployment routine (limited to n times), clean up the RAM, etc.

4.3.12 Telecommand processing

This task processes all the telecomands; it needs to have a really short period for a more responsive operation.

4.3.13 Time control

This task is responsible for the time management of the system. At every second, it increments the system time (epoch). Also, it saves the current system time in the non-volatile memory every minute.

4.3.14 TTC reading

This task reads all the TTC data and status.

4.3.15 Watchdog reset

This task resets the internal and external watchdog timer every 100 ms. The internal watchdog has a maximum count time of 500 ms, and the external watchdog has a maximum of 1600 ms (see chapter 3 for more information about the watchdog timers).

To prevent the system to not reset during an anomaly on some task (like an execution time longer than planned), this task has the lowest possible priority: 0.

4.4 Variables and Parameters

The internal variables and parameters of the OBDH firmware can be seen in Table 4.3.

ID	Name/Description	Туре
0	Time counter in milliseconds	uint32
1	Temperature of the μ C in Kelvin	uint16
2	Input current in mA	uint16
3	Input voltage in mV	uint16
	Last reset cause:	
	- 0x00 = No interrupt pending	
	-0x02 = Brownout (BOR)	
	-0x04 = RST/NMI (BOR)	

	 - 0x06 = PMMSWBOR (BOR) - 0x08 = Wakeup from LPMx.5 (BOR) - 0x0A = Security violation (BOR) - 0x0C = SVSL (POR) - 0x0E = SVSH (POR) - 0x10 = SVML_OVP (POR) - 0x12 = SVMH_OVP (POR) - 0x14 = PMMSWPOR (POR) - 0x16 = WDT time out (PUC) - 0x18 = WDT password violation (PUC) - 0x1A = Flash password violation (PUC) - 0x1C = Reserved - 0x1E = PERF peripheral/configuration area fetch (PUC) - 0x20 = PMM password violation (PUC) 	
5	Reset counter	uint16
6	Last valid telecommand (uplink packet ID)	uint8
7	Temperature of the radio in Kelvin	uint16
8	RSSI of the last valid telecommand	uint16
9	Temperature of the antenna in Kelvin	uint16
	Antenna status bits:	
	- Bit 15: The antenna T is deployed (0) or not (1) Bit 14: Course of the latest activation star for antenna 1	
	- Bit 14: Cause of the latest activation stop for antenna 1 Bit 12: The entenne 1 deployment is active (1) or not (0)	
	Bit 11: The antenna 2 is deployed (0) or not (1)	
	- Bit 10: Cause of the latest activation stop for antenna 2	
	- Bit 9 [°] The antenna 2 deployment is active (1) or not (0)	
	- Bit 8: The antenna is ignoring the deployment switches (1) or not (0)	
10	- Bit 7: The antenna 3 is deployed (0) or not (1)	uint16
	- Bit 6: Cause of the latest activation stop for antenna 3	
	- Bit 5: The antenna 3 deployment is active (1) or not (0)	
	- Bit 4: The antenna system independent burn is active (1) or not (0)	
	- Bit 3: The antenna 4 is deployed (0) or not (1)	
	- Bit 2: Cause of the latest activation stop for antenna 4	
	- Bit 1: The antenna 4 deployment is active (1) or not (0)	
	– Bit 0: The antenna system is armed (1) or not (0)	
11	Hardware version	uint8
1Z 13	Firmware version (ex.: $V1.2.3 = 0.00010203$) Mode ("Normal" = 0. "Hibernation" = 1)	uint32
13 14	Timestamp of the last mode change	uint32
15	Mode duration in sec. (valid only in hibernation mode)	uint32
16	Initial hibernation executed	boolean
17	Initial hibernation time counter (minutes)	uint8
18	Antenna deployment executed	boolean
19	Antenna deployment counter	uint8

Table 4.3: Variables and parameters of the OBDH 2.0.

4.5 Telemetry

4.5.1 Beacon

The beacon packet is transmitted every 1 minute and contains basic telemetry data of the satellite. The content of this packet can be seen in Table 4.4.

- Period: 60 seconds
- Band: UHF
- Condition to operate: Always on

Parameter	Content	Length [bytes]
Packet ID	10h	1
Satellite callsign	"0PY0EGU"	7
μC temperature	Raw μ C temperature	2
μ C voltage	Raw μ C voltage	2
μC current	Raw μ C current	2
Last reset cause	Last reset cause ID	1
System time	System time in ticks	4
Radio temperature	Raw radio temperature	4
Last TC RSSI	Raw RSSI value	2
Last received TC	Last received TC ID	1
Battery 1 voltage	Raw battery 1 voltage	2
Battery 2 voltage	Raw battery 2 voltage	2
Battery current	Raw battery current	2
Battery charge	Raw battery charge	2
Total	-	34

Table 4.4: Beacon packet.

4.5.2 EDC Information

Telemetry packages from EDC can be seen in Table 4.5.

4.5.3 EDC Samples

The EDC samples are TBD bytes long and are transmitted in Y packets with 219 bytes each.

4.6 Telecommands

The system telecommands can be seen in Table 4.7.

Parameter	Content	Len. [bytes]
Packet ID	11h	1
Satellite callsign	"0PY0EGU"	7
	PTT Decoder	
Time tag	PTT signal receiving time	4
Error code	Error code	1
Carrier frequency	Carrier frequency	2
Carrier Abs	Carrier amplitude at ADC interface output	2
Message length	User message length in bytes	1
User message	ARGOS-2 PTT-A2 user message	35
	HK Info	
Current time	Current time since J2000 epoch	4
Elapsed time	Elapsed time since last reset	4
Current supply	System current supply in mA	2
Voltage supply	System voltage supply in mV	2
Temperature	EDC board temperature	1
PLL sync bit	RF front end LO	1
ADC RMS	RMS level at front-end output	2
Num of RX PTT	Generated PTT packages since last initialization	1
Max		1
Memory error count		1
	System State	
Current time		4
PTT available	Number of PTT Package available for reading	1
PTT is paused	PTT decoder task status	1
Sampler state	ADC sampler state	1
Total	-	79

Table 4.5: EDC information packet.

4.6.1 Enter hibernation

This telecommand activates the hibernation mode in a satellite. During the hibernation mode, no transmissions are made by the satellite, it keeps just listening for new incoming packets (reception). The satellite will stay in hibernation mode for a custom period (1 to 65536 minutes), or until a "Leave Hibernation" mode is received. This is a private telecommand, a key is required to send it. Beyond the packet ID and the source callsign (or address), the number o minutes (2 bytes long) is also transmitted.

4.6.2 Leave hibernation

This telecommand complements the "enter hibernation" telecommand by deactivating the hibernation mode in the satellite. When a satellite receives this telecommand it enables the transmission again immediately. This is also a private telecommand; a specific key is required to send it. There is no additional content to this telecommand packet, just the

Parameter	Content	Length [bytes]
Packet ID	12h	1
Satellite callsign	"0PY0EGU"	7
Time tag	Elapsed time since J2000 epoch	4
Packet counter	ADC sample packet number	1
sample[n]	First ADC I-sample	2
Q sample[n]	First ADC Q-sample	2
l sample[n+102]	First ADC I-sample	2
Q sample[n+102]	First ADC Q-sample	2
Total	-	219

Table 4.6: EDC samples packet.

Name	Parameters	Access
Enter hibernation	Hibernation period in seconds	Private
Leave hibernation	None	Private
Activate beacon	None	Private
Deactivate beacon	None	Private
Activate downlink	None	Private
Deactivate downlink	None	Private
Activate EDC	None	Private
Deactivate EDC	None	Private
Get EDC info	None	Private
Activate Radiation instrument	Experiment period in seconds	Private
Deactivate Radiation instrument	None	Private
Set system time	Time value (epoch)	Private
Ping	None	Public
Message broadcast	ASCII message	Public
Request data	Data flags	Public

Table 4.7: System telecomamnds.

Parameter	Content	Length [bytes]
Packet ID	20h	1
Ground station callsign	Any callsign (ASCII, filled with "0"s)	7
Hibernation period	Period in minutes (1 to 65535)	2
Key	Telecommand key (ASCII)	10
Total	-	20

Table 4.8: Enter hibernation telecommand.

packet ID and the source callsign (or address).

Parameter	Content	Length [bytes]
Packet ID	21h	1
Ground station callsign	Any callsign (ASCII, filled with "0"s)	7
Key	Telecommand key (ASCII)	10
Total	-	18

Table 4.9: Leave hibernation telecommand.

4.6.3 Activate beacon

This telecommand activates the beacon transmissions.

4.6.4 Deactivate beacon

This telecommand deactivates the beacon transmissions.

4.6.5 Activate EDC

This telecommand activates the EDC payload.

4.6.6 Deactivate EDC

This telecommand deactivates the EDC payload.

4.6.7 Get EDC info

This telecommand request information from the EDC payload. When received, the OBDH transmits the housekeeping and state frames of the EDC module (28 bytes). This telecommand does not require a key.

4.6.8 Activate Module

The "Activate Module" telecommand is a command to activate an internal module of the satellite. Each module has a unique ID that is passed as an argument of this telecommand's packet. The Table 4.10 shows the current used IDs. This is also a private telecommand, and a key is required to transmit it.

Module	ID number
Battery heater	1
Beacon	2
Periodic telemetry	3

Table 4.10: Leave hibernation telecommand.

4.6.9 Deactivate Module

The "Deactivate Module" telecommand complements the telecommand above. It works the same way and with the same parameters, but in this case, it has the purpose of deactivating a given module of the satellite.

4.6.10 Activate Radiation Instrument

This telecommand activates the Radiation Instrument.

4.6.11 Deactivate Radiation Instrument

This telecommand deactivates the Radiation Instrument.

4.6.12 Activate Payload

This telecommand is similar to the telecommand "Activate Module", but in this case is used for the activate payloads of the satellite. Each satellite will have a list of IDs of the set of payloads.

This is also a private telecommand, and a key is required to transmit it.

4.6.13 Deactivate Payload

Same as the "Deactivate Module" telecommand, but for payloads.

4.6.14 Erase Memory

The telecommand "erase memory" erases all the content presented in the non-volatile memories of the onboard computer of a satellite. This is a private command, and a key is required to send it. No additional content is required in a erase memory telecommand packet, just the packet ID and the source callsign (or address).

4.6.15 Force Reset

This telecommand performs a general reset of the satellite. When received, the satellite reset all subsystems. This is a private telecommand, and a key is required to send this command to a satellite. There is no additional content in this packet, just the packet ID and the source callsign (or address).

4.6.16 Get Payload Data

This telecommand allows a ground station to download data from a specific satellite payload. The required fields are the payload ID, and, optionally, arguments to be passed to the payload. The IDs and arguments vary according to the satellite. This is a private telecommand, and a key is required to send it.

4.6.17 Set Parameter

This telecommand allows the configuration of specific parameters of a given satellite subsystem. The required fields are the ID of the subsystem to set (1 byte), the ID of the parameter to set (1 byte), and the new value of the parameter (4 bytes long). The possible IDs (subsystem and parameter) vary according to the satellite. This is a private telecommand, and a key is required to send it.

4.6.18 Get Parameter

The telecommand "Get Parameter" complements the "Set Parameter" telecommand. It has the purpose of reading specific parameters of a given subsystem. The required fields are the subsystem's ID (1 byte) and the parameter ID (1 byte). The possible IDs (subsystem and parameter) vary according to the satellite. This is a private telecommand, and a key is required to send it.

4.6.19 Set system time

This telecommand sets the internal system time. This is useful for synchronizing the satellite time with a ground station installed on Earth.

4.6.20 Ping

The ping request telecommand is a simple command to test the communication with the satellite. When the satellite receives a ping packet, it will respond with another ping packet (with another packet ID, as defined in the downlink packets list). There are no additional parameters in the ping packet, just the packet ID and the source callsign (or address). It is also a public telecommand; anyone can send a ping request telecommand to a satellite.

Parameter	Content	Length [bytes]
Packet ID	22h	1
Ground station callsign	Any callsign (ASCII, filled with "0"s)	7
Total	-	8

Table 4.11: Ping telecommand.

Parameter	Content	Length [bytes]
Packet ID	12h	1
Satellite callsign	"PY0EGU"	7
Destination callsign	Requester callsign (ASCII, filled with "0"s)	7
Total	-	15

 Table 4.12: Ping telecommand answer.

4.6.21 Message broadcast

The "broadcast message" is another public telecommand; no authentication or key is required to send this telecommand to a satellite. This command has the purpose of making a satellite transmit a custom message back to Earth. This can be useful for communication tasks, like a station sending data to another. There are two parameters in this telecommand: the destination callsign (or address), and the content of the message, which can be any sequence of ASCII characters or any byte value. There is a limit of 38 characters in the message field. The Table 4.13 shows the Telecommand parameters.

Parameter	Content	Length [bytes]
Packet ID	23h	1
Ground station callsign	Any callsign (ASCII, filled with "0"s)	7
Message	Message to broadcast (ASCII)	up to
Total	-	8

Table 4.13: Message broadcast telecommand.

4.6.22 Request data

The data request telecommand is a command to download data from the satellite. This command allows a ground station to get specific parameters from a given period (stored in the satellite's non-volatile memory of the onboard computer). The list of possible parameters varies according to the satellite. The required fields of this telecommand are the parameter ID (1 byte), the start period in milliseconds (epoch, 4 bytes), and the end period in milliseconds (epoch, 4 bytes). This is a private telecommand, and a key is required to send it.

4.7 Operating System

The FreeRTOS 10 [7] is being used as an operating system. FreeRTOS is a marketleading real-time operating system (RTOS) for microcontrollers and small microprocessors. Distributed freely under the MIT open-source license, FreeRTOS includes a kernel and a growing set of IoT libraries suitable for use across all industry sectors. FreeRTOS is built with an emphasis on reliability and ease of use.

The main configuration parameters of the operating system in this project are available in Table 4.14.

More details of the used configuration parameters can be seen in the file *firmware/-config/FreeRTOSConfig.h* from [3].

4.8 Hardware Abstraction Layer (HAL)

As the Hardware Abstraction Layer (HAL), the DriverLib [8] from Texas Instruments is begin used. It is the official API to access the registers of the MSP430 microcontrollers.

Parameter	Value	Unit
Version	v10.2.0	-
Tick rate (Hz)	1000	Hz
CPU clock (HZ)	32	MHz
Max. priorities	5	-
Heap size	40960	bytes
Max. length of task name	20	-

Table 4.14: FreeRTOS main configuration parameters.

The DriverLib is meant to provide a "software" layer to the programmer to facilitate a higher programming level than direct register accesses. By using the high-level software APIs provided by DriverLib, users can create powerful and intuitive code that is highly portable between devices within the MSP430 platform and different families in the MSP430/MSP432 platforms.

CHAPTER 5

Board Assembly

The OBDH2 has some DNP components to provide flashing, debugging, testing, or extra interfaces if needed. These components may be optional for the flight model of the board. The draftsman document can be viewed for more detailed information regarding their location and board dimensions [9].

5.1 Development Model

5.1.1 Debug and programming connectors

The P2 and P6 connectors are used for flashing and debugging the OBDH2 board. See again chapter 3 (Hardware) and subsection 3.2.3 (Programmer and Debug) for more information.

5.1.2 Status leds

As already exposed in the document OBDH2 has status LEDs to be used during the development and test phases. See again chapter 2 (System Overview) and subsection 2.3.1 (Status LEDs) for more information.

5.2 Flight Model

The flight model of the OBDH 2.0 boards follows a special assembly, some components are not soldered, like the LEDs and some connectors. The PCB is also fabricated with higher quality, using the Class 3 standard and a core material less sensitive to temperature changes. The silkscreen is also not printed on the board.

5.3 Custom Configuration

On the PC104 connector of OBDH2, there are some jumper resistors to enable extra I2C, SPI, and GPIO interfaces if desired. Note that the I2C0, I2C1, and SPI channels should not be used with shared devices. These components' corresponding tables and locations on the PCB are shown on Table 5.1 and Figures 5.1, 5.2 and 5.3.

Label	Interface
J_PC1	I2C0_SDA
J_PC2	I2C0_SCL
J_PC3	I2C1_SDA
J_PC4	I2C1_SCL
J_PC5	SPI_MOSI
J_PC6	SPI_MISO
J_PC7	SPI_CLK
J_PC8	GPI0
J_PC9	GPI01
J_PC10	GPI02
J_PC11	GPI03

Table 5.1: Additional PC104 inferfaces.

Figure 5.1: Additional GPIOs and I2C channel 1.

Figure 5.2: Additional I2C channel 0.

Figure 5.3: Additional GPIO and SPI channel.

CHAPTER 6

Usage Instructions

6.1 **Powering the Board**

Since the OBDH 2.0 is a service module within a satellite bus, to correctly provide its power supply, it requires an external 3.3 ± 0.2 V power input and a current capability of at least 100 *mA* (might change depending on the daughterboard requirements). As presented in the PC-104 and programming interface sections, some options are given to power the module to improve flexibility during development. The board has two power schemes: the JTAG interface for debugging, and the PC-104, for the flight configuration. The first case uses both P1 or P2 connectors as power input (besides the JTAG and UART interfaces) and requires a jumper connection in the P6 connector. The second uses the PC-104 pins H1-45 and H1-46 to provide the power, and the P6 connector should remain open. For pinout details, refer to the external connectors in the hardware chapter.

6.2 Log Messages

The OBDH 2.0 has a UART interface dedicated to debugging, described in Table 3.8. It follows a log system structure to improve the information provided in each message. The Figure 6.1 shows an example of the logging system, more specifically the initialization sequence. The messages use the following scheme: in green inside brackets, the timestamp; in magenta, the scope (or origin) of the log; and lastly the actual message, which might be white (info or note), yellow (warning), and red (error).

6.3 Daughterboards Installation

The daughterboard requirements might change for each application board attached. Then, it is important to check at least a minimal set of mandatory characteristics. First, it is important to verify mechanical parameters that concern size (recommended $63.5 \times 43.5 mm$), maximum height (no higher than 7 mm), screw attachment (refer to mechanical sheet [9]), and contact connector positioning. After this, the electrical interface must be checked (refer to subsection 3.2.4). There are 3 different power supply options, a 3.3 V source shared with the OBDH board itself, another 3.3 V source shared with the antenna deployer, and the main battery bus that ranges from 5.4 to 8.4 V. Lastly, depending on the application board design, it is necessary to check communication interface protocols and parameters, control inputs and outputs, and external interfaces with other modules.

/dev/tt	yUSB0 - PuTTY		-	•	×
OBDH 2.0 Copyright (C) 2020, SpaceLab; This program comes with ABSOLUTELY NO 6 This is free software, and you are welc under certain conditions.	MARRANTY. come to redistribu	ce it			
Source code: https://github.com/spacela Documentation: https://github.com/space	b-ufsc/obdh2 lab-ufsc/obdh2/do				
* * * * * * * * * * * * * * * * * * * *					
****		* * * * * * * * * *			
**********		* * * * * * * * * *			
····· // / _/ / / _/ / _/ / / _/ / / / / _/ / / / / / / / / / / / / / / / / / / /		* * * * * * * * * *			
	<u> </u>	* * * * * * * * * *			
/ــــ/ LD اِ (L) اِ (ـــــ/	U()	* * * * * * * * * *			
++++++++++ <u>/</u>	\/_!_+/	* * * * * * * * * *			
·····		* * * * * * * * * *			
• • • • • • • • • •		* * * * * * * * * *			
***************************************	,, ,,	* * * * * * * * * *			
**********	·	* * * * * * * * * *			
••••••••••	/!!!!!!	* * * * * * * * * *			
		* * * * * * * * * *			
••••••································	·(_//	* * * * * * * * * *			
******		****			
******		*****			
* * * * * * * * * * * * * * * * * * * *	*****	• • • • • • • • • • • •			
* * * * * * * * * * * * * * * * * * * *	*****	• • • • • • • • • • • •			
Version: [0.3.13]					
Status: Development					
Author: SpaceLab <spacelab.ufsc< td=""><td>@qmail.com></td><td></td><td></td><td></td><td></td></spacelab.ufsc<>	@qmail.com>				
	=======================================				
[196] Startup: FreeRTOS V10,2,0					
[202] Startup: System clocks: MCLK=31	.981568 Hz, SMCLK=3	31981568 Hz, AC	LK=327	'68 Hz	
[216] LEDs: Initializing system LEDs.					
[223] EPS: Initializing EPS device					
230 JEPS: Error during the initializ	ation! (error 429	1967295)			
[241] Kadio: Initializing radio devic	:e				
[2077] Startup: libcsp disabled!					
[2092] Payload EUC: Error initializir	g the device!				
[2101] Startup: Boot completed with E	KKUK5 !				

Figure 6.1: Firmware initialization on PuTTy.

Bibliography

- [1] SpaceLab. FloripaSat-2 Documentation, 2021. Available at <https://github.com/ spacelab-ufsc/floripasat2-doc>.
- [2] SpaceLab. On-Board Data Handling, 2019. Available at https://github.com/floripasat/obdh.
- [3] SpaceLab. On-Board Data Handling 2.0, 2020. Available at <https://github.com/ spacelab-ufsc/obdh2>.
- [4] Samtec. FSI-110-03-G-D-AD, 2020. Available at <https://www.samtec.com/products/ fsi-110-03-g-d-ad>.
- [5] Texas Instruments Inc. *MSP430x5xx and MSP430x6xx Family User's Guide*, October 2016.
- [6] Texas Instruments Inc. TPS328x Voltage Monitor With Watchdog Timer, July 2020.
- [7] Amazon Web Services, Inc. FreeRTOS Real-time operating system for microcontrollers, 2020. Available at https://www.freertos.org/>.
- [8] Texas Instruments. MSP Driver Library, 2020. Available at https://www.ti.com/tool/MSPDRIVERLIB.
- [9] SpaceLab. On-board data handling 2.0 draftsman document, 2020. Available at <https://github.com/spacelab-ufsc/obdh2/tree/master/hardware/outputs/board_draftsman>.

APPENDIX A

Test Report of v0.5 Version

This appendix is a test report of the first manufactured and assembled PCB (version v0.5).

- PCB manufacturer: PCBWay (China)
- PCB assembly: PCBWay (China)
- PCB arrival date: 2021/04/14
- Execution date: 2021/04/16 to TBC
- Tester: G. M. Marcelino

A.1 Visual Inspection

- **Test description/Objective**: Inspection of the board, visually and with a multimeter, searching for fabrication and assembly failures.
- Material:
 - Multimeter UNI-T DT830B
- **Results**: The results of this test can be seen in Figures A.1 (top view of the board) and A.2 (bottom view of the board).
- Conclusion: No problems were identified on this test.

A.2 Firmware Programming

- **Test description/Objective**: Inspection of the board, visually and with a multimeter, searching for fabrication and assembly mistakes.
- Material:
 - Code Composer Studio v9.3.0
 - MSP-FET Flash Emulation Tool
 - USB-UART converter
 - Screen (Linux software)

Figure A.1: Top view of the OBDH 2.0 v0.5 board.

- **Results**: The results of this are available in Figure A.3, where the log messages of the first boot of the board can be seen.
- Conclusion: No problems were identified on this test.

A.3 Communication Busses

- **Test description/Objective**: Test the communication busses of the board, as listed below:
 - I²C Port 0
 - I^2C Port 1
 - I^2C Port 2
- Material:
 - Saleae Logic Analyzer (24 MHz, 8 channels)
 - Saleae Logic software (v1.2.18)
 - MSP-FET Flash Emulation Tool

Figure A.2: Bottom view of the OBDH 2.0 v0.5 board.

- **Results**: The results of this test can be seen in Figures A.4, A.5 and A.6.
- **Conclusion:** No problems were identified on this test, all buses are working as expected.

A.4 Sensors

A.4.1 Input Voltage

- Test description/Objective: .
- Material:
 - Code Composer Studio v9.3.0
 - MSP-FET Flash Emulation Tool
 - USB-UART converter
 - Screen (Linux software)
- Results: .
- Conclusion: .

Figure A.3: Log messages during the first boot.

(a) Connections of the I^2C port 0 test.

(b) Waveforms of the I^2C port 0 test.

Figure A.4: I^2C port 0 test.

A.4.2 Input Current

- Test description/Objective: .
- Material:

(a) Connections of the $\mathsf{I}^2\mathsf{C}$ port 1 test.

8-0		Saleae Logic 1.2.18 - [Connected] - [2	2 MHz Digital, 2 s]	c	Options 🔻
Start	÷		+0.7 ms	Annotations Timing Marker Dair	+
00 Channel 0					
01 Channel 1 🔅	+4				
02 Channel 2 🔅	*5	Setup Write to () (0x6CI) + NAK		▼ Analyzers	
03 Channel 3 🌣	+5			12C	*
04 Channel 4 🌣	¥ —				
05 Channel 5 🔅	+1			Decoded Protocols	
06 Channel 6 🌣	**			Q. Search Protocols	
07 Channel 7 🌣	+f				
Q: Capture	2 MHz, 4	M Sa 🔅 🖉 2 MHz, 4 M Sa 🔅			

(b) Waveforms of the I^2C port 1 test.

Figure A.5: I^2C port 1 test.

(a) Connections of the $\mathsf{I}^2\mathsf{C}$ port 2 test.

(b) Waveforms of the I^2C port 2 test.

- Code Composer Studio v9.3.0
- MSP-FET Flash Emulation Tool
- USB-UART converter
- Screen (Linux software)
- Results: .
- Conclusion: .

A.5 Peripherals

A.5.1 NOR Flash Memory

• **Test description/Objective**: Test the functionality of the NOR flash memory by verifying the device ID register of the IC.

(a) Current sensing circuit.

TOP VIEW

(b) MAX9934 pinout.

(c) Current sensing layout (bottom layer).

Figure A.7: .

Figure A.8: Current sensor fix.

Figure A.9: Log messages with the read values from the current sensor.

• Material:

- Saleae Logic Analyzer (24 MHz, 8 channels)
- Saleae Logic software (v1.2.18)
- MSP-FET Flash Emulation Tool
- **Results**: The results of this test can be seen in Figure A.10.
- **Conclusion:** No problems were identified on this test, as can be seen in Figure A.10(b), the device ID register was read as expected.

A.6 Conclusion

Excluding the current sensor issue, no major problems were identified during the executed tests. For the next fabrication round, the identified mistakes will be corrected.

- (a) Connections of the NOR flash memory test.
- (b) Waveforms of the NOR memory SPI.

Figure A.10: NOR memory SPI test.

APPENDIX B

Test Report of v0.7 Version

This appendix is a test report of the first manufactured and assembled PCB (version v0.7).

- PCB manufacturer: PCBWay (China)
- PCB assembly: PCBWay (China)
- PCB arrival date: 2022/04/18
- Execution date: 2022/04/22 to 2022/08/10
- Tester: Gabriel M. Marcelino, Vitória B. Bianchin and Bruno Benedetti
- DNP components: P8, P2, P5, P6, P7, D1, D2, D3, D4, D5, D6, D7, D8, U10, R19, R20, R_ESD, J_PC3, J_PC4, R2, R3, R4, R5, R6, R7, R12, R13, J_V3, J_PC5, J_PC6, J_PC7, J_PC1, J_PC2, V1, V4, R36, C36

B.1 Visual Inspection

- **Test description/Objective**: Inspection of the board, visually and with a multimeter, searching for fabrication and assembly failures.
- Material:
 - Digital microscope (1000x)
 - Multimeter Fluke 17B+
- **Results**: The results of this test can be seen in Figures B.1 (top view of the board) and B.2 (bottom view of the board).
- Conclusion: No problems were identified on this test.

B.2 Firmware Programming

- **Test description/Objective**: Inspection of the board, visually and with a multimeter, searching for fabrication and assembly mistakes.
- Material:

Figure B.1: Top view of the OBDH 2.0 v0.7 board.

Figure B.2: Bottom view of the OBDH 2.0 v0.7 board.

- Code Composer Studio v11
- MSP-FET Flash Emulation Tool
- USB-UART converter
- PuTTy
- **Results**: The results of this are available in Figure B.3, where the log messages of the first boot of the board can be seen.
- Conclusion: No problems were identified on this test.

/dev/ttyUSB0 - PuTTY	_	D	8					
Source code: https://github.com/spacelab-ufsc/abdh2 Documentation: https://github.com/spacelab-ufsc/abdh2/doc								
·······								
Version: v0,9,0								
Status; Development Author: Gabriel Mariano Marcelino (gabriel,ww80gmail.com> Compiled: Apr 23 2022 at 14:40:46								
[200] Startup: FreeRTOS V10.2.0 [206] Startup: Handware revision is 1 [211] Startup: Mandware Journe, Johnson MT V-71001EC0 Ha. ONI V-72001EC0 Ha.								
224) Startup: Jastres clause Notos, 223) Startup: Last rest cause: Noto 235) Media: Initializing NOR memory								
(200) Media Mizuy With Siz Mb Capacity detected: (266) LEBs: Initializing system LEBs (274) Current Sensor: Initializing the current sensor								
233] Current Sensor: Current input current; 150 mA 303] Voltage Sensor: Initializing the voltage sensor 312 Voltage Sensor: Current ingut voltage 3487 NV								
322] Temperature Sensor: Initializing the temperature sensor 332] Temperature Sensor: Durrent temperature: 24 oC 240 ITCD. Listificient Discharger (Der Stensor)			۰.					
497 [PS: Error during the initialization! (error -1) 501] Startup: Hibesp disabled!								
1 515 Faglaad ELD 1: Error during the initialization) 533] Paylaad: ELC 0: Error during the initialization! 542] Artemat Initializing								
 [549] Brtenna: Error during the initialization [558] Startup: Boot completed with 4 ERROR(S) [569] Time Control: From reading the system time from the non-volatile memory 								
587] Time Control: The last saved system time is not available! 597] TTC: initializing TTC device 0 597] The last TEC of Experiment Section 1								
614 1 EFS Initializing Fo device 623 1 TC: Error reading the hardware version of the TTC device 01								
689]TC: Initializing TC device 1 689]TC: Initializing TC device 1 677]Amtemna: Initializing								
[694] ITC: Error reading the hardware version of the ITC device 1! [743] Read TTC: Error initializing the TTC device! [743] Retma: Error during the initialization!								
761] TTC: Error reading the data from the TTC device 01 771] Read TTC: Error reading data from the TTC 0 device!								
1 roi j mead Hondema: error initializing the Hondema device! [907] ITC: Error reading the data from the TTC device 1! [802] Plead ITC: Error reading data from the TTC 1 device!								
1 800 JPS: three during the initialization (error -1) [833] Read EPS: Error initializing the EPS device! [848] EPS: Imore reading the data Na initialized driver!								
857] Read EPS: Error reading data from the EPS device! 937] Antenna: Error reading the anterna data! 946] Band Antenna: From reading that from the Antenna device!								

Figure B.3: Log messages during the first boot.

B.3 Communication Busses

- **Test description/Objective**: Test the communication busses of the board, as listed below:
 - I^2C Port 0
 - I^2C Port 1
 - I^2C Port 2
- Material:
 - Saleae Logic Analyzer (24 MHz, 8 channels)
 - Saleae Logic software (v2)

- MSP-FET Flash Emulation Tool
- **Results**: The results of this test can be seen in Figures B.5, B.6 and B.7.
- **Conclusion:** No problems were identified on this test, all buses are working as expected.

Figure B.4: Setup of the I2C port tests.

B.4 Sensors

B.4.1 Input Voltage

- Test description/Objective: Verify the input voltage measurements of the board.
- Material:
 - Code Composer Studio v11
 - MSP-FET Flash Emulation Tool
 - Programmable power supply
 - USB-UART converter
 - Screen (Linux software)
- Results: TBC.
- **Conclusion**: The input voltage was measured correctly by the sensor.

Figure B.5: Waveform of the I2C port 0.

	Logic 2 [Logic - Connected] –											-	• 😣									
File	Edit Capture	Measure	e View	Help																		
8 Ch	annels	< _{µs}	-20 µs	-10 µs	0s T	+10 µs •	20 µs +30)µs +4	0µs +50	Оµs +4	60 µs 1	70 µs	+80 µs	+90 μs	100 µs +1(Δn	alvzers					
DO	Channel 0	-11					\x10	10	_				\0 (fran	aming error)			alyzero					
	Async Serial													Async Serial								
	I2C - SCL												Async Serial [1]									
						0x76	(framing err	ror)								•	I2C					_
01	Async Serial [1]	-#					Setup W	rite to [Ox	[0x36] + NAK	<				•	Trigger Vi	ew 🛦	6		(<u>1F</u>)			
	 I2C - SDA 										• ×					Da	ita 🔿 🥪					
D2	Channel 2	-#															Туре	Start	Duration	data	ac	
																	data	-15.583 µs	82.458 µs			
		E.															start					
D3	Channel 3	-#																	82.458 µs			
																	address	-5.417 µs				
																	data		82.458 µs			
		-#			-												data		82.458 µs	0x76		
D4 Channel 4	Channel 4																					
																	data	8.02825 ms	82.458 µs			
		L															address	8.033542 ms				
D5	Channel 5																data		82.458 µs			
																	data		82.458 µs			
																	start	16.062708 ms				
Se	ssion 0 × +																					19 µs 🖍

Figure B.6: Waveform of the I2C port 1.

B.4.2 Input Current

- **Test description/Objective**: Verify the input current measurements of the board.
- Material:

Appendix B. Test Report of v0.7 Version

Figure B.7: Waveform of the I2C port 2.

- Code Composer Studio v11
- MSP-FET Flash Emulation Tool
- Programmable power supply
- USB-UART converter
- Screen (Linux software)
- Results: TBC.
- Conclusion: The input current was measured correctly by the sensor.

B.5 Peripherals

B.5.1 NOR Flash Memory

- **Test description/Objective**: Test the functionality of the NOR flash memory by verifying the device ID register of the IC and performing writing/reading operations.
- Material:
 - Code Composer Studio v11
 - MSP-FET Flash Emulation Tool
 - USB-UART converter
 - Screen (Linux software)
- **Results**: The results of this test can be seen in Figure B.8.

• **Conclusion:** No problems were identified on this test, as can be seen in Figure B.8, an writing/reading operation were executed with success.

	233] Hedra, Interarizing (Khit Memor 9+++
	[242] Mediat Initializing NOR memory
	E E E I Hodrat Inforatienig hon wower 3ttt
	279 mt25g: Test 1: set write enable ok!
- 10	_[302] mt25q: lest 2: write ok!
	Writing: 51, 25, 10, 15, 44, 35
	[790] ##9Eat Toot 7t wood ok!
	L SZA I MUZSAT LEST ST LEAD OK!
_	data neadt 51 97 10 15 dd 99
	uata (cau. 31, 23, 10, 13, 44, 33
	[339] Media: MT250 with 512 Mb capacity detected]
	[333] Hedrat Histod with STS up capacity detected:
	[747] [EDet Initializing quoter [EDe

Figure B.8: Test results of the NOR flash memory.

B.5.2 FRAM Memory

- **Test description/Objective**: Test the functionality of the FRAM memory by verifying the device ID register of the IC and performing writing/reading operations.
- Material:
 - Code Composer Studio v11
 - MSP-FET Flash Emulation Tool
 - USB-UART converter
 - Screen (Linux software)
- **Results**: The results of this test can be seen in Figure B.9.
- Conclusion: No problems were identified on this test.

B.6 Conclusion

No major problems were identified during the executed tests, all peripherals all working as expected.

(b)

Figure B.9: Test results of the FRAM memory.